Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38568263

RESUMEN

Gluconic acid's potential as a wheat straw pretreatment agent was studied at different concentrations (0.125-1 M) and temperatures (160-190 °C) for 30 min, followed by enzymatic hydrolysis. 0.125 M gluconic acid, 170 °C, yielded the highest xylose output, while 0.5 M gluconic acid at 190 °C yielded the best glucose yield. A fraction of gluconic acid decomposed during pretreatment. Detoxified hemicellulose hydrolysate from 0.125 M gluconate at 170 °C for 60 min showed promise for ethanol production. The gluconate contained in the detoxified hemicellulose hydrolysate can be fermented to ethanol along with other hemicellulose sugars present by Escherichia coli SL100. The ethanol yield from gluconate and sugars was about 90.4 ± 1.8%. The pretreated solids can be effectively converted to ethanol by Saccharomyces cerevisiae D5A via simultaneous saccharification and fermentation with the cellulase and ß-glucosidase addition. The ethanol yield achieved was 92.8 ± 2.0% of the theoretical maximum. The cellulose conversion was about 70.8 ± 0.8%.

2.
G3 (Bethesda) ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427916

RESUMEN

Tanoak (Notholithocarpus densiflorus) is an evergreen tree in the Fagaceae family found in California and southern Oregon. Historically, tanoak acorns were an important food source for Native American tribes and the bark was used extensively in the leather tanning process. Long considered a disjunct relictual element of the Asian stone oaks (Lithocarpus spp.), phylogenetic analysis has determined that the tanoak is an example of convergent evolution. Tanoaks are deeply divergent from oaks (Quercus) of the Pacific Northwest and comprise a new genus with a single species. These trees are highly susceptible to 'sudden oak death' (SOD), a plant pathogen (Phytophthora ramorum) that has caused widespread mortality of tanoaks. Here, we set out to assemble the genome and perform comparative studies among a number of individuals that demonstrated varying levels of susceptibility to SOD. First, we sequenced and de novo assembled a draft reference genome of N. densiflorus using co-barcoded library processing methods and an MGI DNBSEQ-G400 sequencer. To increase the contiguity of the final assembly, we also sequenced Oxford Nanopore (ONT) long reads to 30X coverage. To our knowledge, the draft genome reported here is one of the more contiguous and complete genomes of a tree species published to date, with a contig N50 of ∼1.2 Mb, a scaffold N50 of ∼2.1 Mb, and a complete gene score of 95.5% through BUSCO analysis. In addition, we sequenced 11 genetically distinct individuals and mapped these onto the draft reference genome enabling the discovery of almost 25 million single nucleotide polymorphisms and ∼4.4 million small insertions and deletions. Finally, using co-barcoded data we were able to generate complete haplotype coverage of all 11 genomes.

3.
Appl Biochem Biotechnol ; 196(3): 1292-1303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37392323

RESUMEN

We report a novel production process for lactobionic acid (LBA) production using an engineered Neurospora crassa strain F5. The wild-type N. crassa strain produces cellobiose dehydrogenase (CDH) and uses lactose as a carbon source. N. crassa strain F5, which was constructed by deleting six out of the seven ß-glucosidases in the wild type, showed a much slower lactose utilization rate and produced a much higher level of cellobiose dehydrogenase (CDH) than the wild type. Strain N. crassa F5 produced CDH and laccase simultaneously on the pretreated wheat straw with 3 µM of cycloheximide added as the laccase inducer. The deproteinized cheese whey was added directly to the shake flasks with the fungus present to achieve LBA production. Strain F5 produced about 37 g/L of LBA from 45 g/L of lactose in 27 h since deproteinized cheese whey addition. The yield of LBA from consumed lactose was about 85%, and the LBA productivity achieved was about 1.37 g/L/h.


Asunto(s)
Queso , Disacáridos , Neurospora crassa , Lactosa , Suero Lácteo , Neurospora crassa/genética , Lacasa , Proteína de Suero de Leche
4.
Genome Biol ; 24(1): 290, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111050

RESUMEN

BACKGROUND: Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. RESULTS: Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. CONCLUSIONS: This study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.


Asunto(s)
Genoma de Planta , Vitis , Vitis/genética , Fitomejoramiento , Genómica , América del Norte
5.
PLoS Genet ; 19(11): e1011019, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934795

RESUMEN

Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.


Asunto(s)
Neurospora crassa , Neurospora , Neurospora/genética , Genes Fúngicos , Neurospora crassa/genética , Fenotipo , Perfilación de la Expresión Génica , Reproducción/genética , Proteínas Fúngicas/genética
6.
Mol Ecol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843462

RESUMEN

The origin of new genes has long been a central interest of evolutionary biologists. However, their novelty means that they evade reconstruction by the classical tools of evolutionary modelling. This evasion of deep ancestral investigation necessitates intensive study of model species within well-sampled, recently diversified, clades. One such clade is the model genus Neurospora, members of which lack recent gene duplications. Several Neurospora species are comprehensively characterized organisms apt for studying the evolution of lineage-specific genes (LSGs). Using gene synteny, we documented that 78% of Neurospora LSG clusters are located adjacent to the telomeres featuring extensive tracts of non-coding DNA and duplicated genes. Here, we report several instances of LSGs that are likely from regional rearrangements and potentially from gene rebirth. To broadly investigate the functions of LSGs, we assembled transcriptomics data from 68 experimental data points and identified co-regulatory modules using Weighted Gene Correlation Network Analysis, revealing that LSGs are widely but peripherally involved in known regulatory machinery for diverse functions. The ancestral status of the LSG mas-1, a gene with roles in cell-wall integrity and cellular sensitivity to antifungal toxins, was investigated in detail alongside its genomic neighbours, indicating that it arose from an ancient lysophospholipase precursor that is ubiquitous in lineages of the Sordariomycetes. Our discoveries illuminate a "rummage region" in the N. crassa genome that enables the formation of new genes and functions to arise via gene duplication and relocation, followed by fast mutation and recombination facilitated by sequence repeats and unconstrained non-coding sequences.

7.
Mol Plant Microbe Interact ; 36(1): 26-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306437

RESUMEN

Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora , Phytophthora/genética , Filogenia , Transferencia de Gen Horizontal , Genoma , Genómica , Plantas/genética
8.
J Fungi (Basel) ; 7(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803362

RESUMEN

Phosphites have been used to control Sudden Oak Death; however, their precise mode of action is not fully understood. To study the mechanism of action of phosphites, we conducted an inoculation experiment on two open-pollinated tanoak families, previously found to be partially resistant. Stems of treatment group individuals were sprayed with phosphite, and seven days later, distal leaves were inoculated with the Sudden Oak Death pathogen Phytophthora ramorum. Leaves from treated and untreated control plants were harvested before and seven days after inoculation, and transcriptomes of both host and pathogen were analyzed. We found that tanoak families differed in the presence of innate resistance (resistance displayed by untreated tanoak) and in the response to phosphite treatment. A set of expressed genes associated with innate resistance was found to overlap with an expressed gene set for phosphite-induced resistance. This observation may indicate that phosphite treatment increases the resistance of susceptible host plants. In addition, genes of the pathogen involved in detoxification were upregulated in phosphite-treated plants compared to phosphite-untreated plants. In summary, our RNA-Seq analysis supports a two-fold mode of action of phosphites, including a direct toxic effect on P. ramorum and an indirect enhancement of resistance in the tanoak host.

9.
Phytopathology ; 111(10): 1818-1827, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33616417

RESUMEN

Phytophthora ramorum is an invasive, broad host range pathogen that causes ramorum blight and sudden oak death in forest landscapes of western North America. In commercial nurseries, asymptomatic infections of nursery stock by P. ramorum and other Phytophthora species create unacceptable risk and complicate inspection and certification programs designed to prevent introduction and spread of these pathogens. In this study, we continue development of a volatile organic compound (VOC)-based test for detecting asymptomatic infections of P. ramorum in Rhododendron sp. We confirmed detection of P. ramorum from volatiles collected from asymptomatic root-inoculated Rhododendron plants in a nursery setting, finding that the VOC profile of infected plants is detectably different from that of healthy plants, when measured from both ambient VOC emissions and VOCs extracted from leaf material. Predicting infection status was successful from ambient volatiles, which had a mean area under the curve (AUC) value of 0.71 ± 0.17, derived from corresponding receiver operating characteristic curves from an extreme gradient boosting discriminant analysis. This finding compares with that of extracted leaf volatiles, which resulted in a lower AUC value of 0.51 ± 0.21. In a growth chamber, we contrasted volatile profiles of asymptomatic Rhododendron plants having roots infected with one of three pathogens: P. ramorum, P. cactorum, and Rhizoctonia solani. Each pathogen induced unique and measurable changes, but generally the infections reduced volatile emissions until 17 weeks after inoculation, when emissions trended upward relative to those of mock-inoculated controls. Forty-five compounds had significant differences compared with mock-inoculated controls in at least one host-pathogen combination.


Asunto(s)
Phytophthora , Rhododendron , Infecciones Asintomáticas , América del Norte , Enfermedades de las Plantas
10.
Microorganisms ; 8(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580470

RESUMEN

It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many asexual organisms can generate genetic and phenotypic variation, providing an avenue for further evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs arise and their significance to the California NA1 population, we studied the evolutionary histories of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction suggests that SVs arose by somatic mutations among multiple independent lineages, rather than by recombination. We asked if this unusual phenomenon of parallel evolution between isolated populations is transmitted to extant lineages and found that SVs persist longer in a population if their genetic background had a lower mutation load. Genetic parallelism was also found in geographically distant demes where forest conditions such as host density, solar radiation, and temperature, were similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the potential to change the course of an epidemic. By combining genomics and environmental data, we identified an unexpected pattern of repeated evolution in an asexual population and identified environmental factors potentially driving this phenomenon.

11.
G3 (Bethesda) ; 10(7): 2241-2255, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354704

RESUMEN

Phytophthora megakarya and P. palmivora are oomycete pathogens that cause black pod rot of cacao (Theobroma cacao), the most economically important disease on cacao globally. While P. palmivora is a cosmopolitan pathogen, P. megakarya, which is more aggressive on cacao than P. palmivora, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The P. megakarya genome is exceptionally large (222 Mbp) and nearly twice the size of P. palmivora (135 Mbp) and most known Phytophthora species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in P. palmivora In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In P. megakarya we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of Phytophthora genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.


Asunto(s)
Cacao , Phytophthora , Duplicación de Gen , Phytophthora/genética , Enfermedades de las Plantas
12.
Mol Plant Microbe Interact ; 32(11): 1472-1474, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31306082

RESUMEN

The NA1 clonal lineage of Phytophthora ramorum is responsible for sudden oak death, an epidemic that has devastated California coastal forest ecosystems. An NA1 isolate, Pr102, derived from coast live oak in California, was previously sequenced and reported with a 65-Mb assembly containing 12 Mb of gaps in 2,576 scaffolds. Here, we report an improved 70-Mb genome in 1,512 scaffolds with 6,752 bp of gaps after incorporating PacBio P5-C3 long reads. This assembly contains 19,494 gene models (average gene length of 2,515 bp) compared with 16,134 genes (average gene length of 1,673 bp) in the previous version. We predicted 29 new RXLR genes and 76 new paralogs of a total 392 RXLR genes from this assembly. We predicted 35 CRN genes compared with 19 in an earlier version with six paralogs. Our long non-coding RNA prediction identified 255 candidates. This new resource will be invaluable for future evolution studies on the invasive plant pathogen.


Asunto(s)
Genoma de Protozoos , Phytophthora , California , Genoma de Protozoos/genética , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Quercus/parasitología , Análisis de Secuencia de ADN
13.
Ecol Evol ; 9(11): 6588-6605, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236246

RESUMEN

Hybridization may be a major driver in the evolution of plant pathogens. In a high elevation Alpine larch stand in Montana, a novel hybrid fungal pathogen of trees originating from the mating of Heterobasidion irregulare with H. occidentale has been recently discovered. In this study, sequence analyses of one mitochondrial and four nuclear loci from 11 Heterobasidion genotypes collected in the same Alpine larch stand indicated that hybridization has increased allelic diversity by generating novel polymorphisms unreported in either parental species. Sequence data and ploidy analysis through flow cytometry confirmed that heterokaryotic (n + n) genotypes were not first-generation hybrids, but were the result of multiple backcrosses, indicating hybrids are fertile. Additionally, all admixed genotypes possessed the H. occidentale mitochondrion, indicating that the hybrid progeny may have been backcrossing mostly with H. occidentale. Based on reticulate phylogenetic network analysis by PhyloNet, Bayesian assignment, and ordination tests, alleles can be defined as H. irregulare-like or H. occidentale-like. H. irregulare-like alleles are clearly distinct from all known H. irregulare alleles and are derived from the admixing of both Heterobasidion species. Instead, all but one H. occidentale alleles found in hybrids, although novel, were not clearly distinct from alleles found in the parental H. occidentale population. This discovery demonstrates that Alpine larch can be a universal host favouring the interspecific hybridization between H. irregulare and H. occidentale and the hybridization-mediated evolution of a nucleus, derived from H. irregulare parental species but clearly distinct from it.

14.
Mol Plant Microbe Interact ; 32(8): 1047-1060, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30794480

RESUMEN

Phytophthora ramorum is a destructive pathogen that causes sudden oak death disease. The genome sequence of P. ramorum isolate Pr102 was previously produced, using Sanger reads, and contained 12 Mb of gaps. However, isolate Pr102 had shown reduced aggressiveness and genome abnormalities. In order to produce an improved genome assembly for P. ramorum, we performed long-read sequencing of highly aggressive P. ramorum isolate CDFA1418886 (abbreviated as ND886). We generated a 60.5-Mb assembly of the ND886 genome using the Pacific Biosciences (PacBio) sequencing platform. The assembly includes 302 primary contigs (60.2 Mb) and nine unplaced contigs (265 kb). Additionally, we found a 'highly repetitive' component from the PacBio unassembled unmapped reads containing tandem repeats that are not part of the 60.5-Mb genome. The overall repeat content in the primary assembly was much higher than the Pr102 Sanger version (48 versus 29%), indicating that the long reads have captured repetitive regions effectively. The 302 primary contigs were phased into 345 haplotype blocks and 222,892 phased variants, of which the longest phased block was 1,513,201 bp with 7,265 phased variants. The improved phased assembly facilitated identification of 21 and 25 Crinkler effectors and 393 and 394 RXLR effector genes from two haplotypes. Of these, 24 and 25 RXLR effectors were newly predicted from haplotypes A and B, respectively. In addition, seven new paralogs of effector Avh207 were found in contig 54, not reported earlier. Comparison of the ND886 assembly with Pr102 V1 assembly suggests that several repeat-rich smaller scaffolds within the Pr102 V1 assembly were possibly misassembled; these regions are fully encompassed now in ND886 contigs. Our analysis further reveals that Pr102 is a heterokaryon with multiple nuclear types in the sequences corresponding to contig 10 of ND886 assembly.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Protozoos , Phytophthora , Polimorfismo Genético , Genoma de Protozoos/genética , Haplotipos , Phytophthora/genética
15.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578264

RESUMEN

Gluconic acid, an oxidized cellulose degradation product, could be produced from cellulosic biomass. Glycerol is an inexpensive and renewable resource for fuels and chemicals production and is available as a byproduct of biodiesel production. Gluconate is a more oxidized substrate than glucose, whereas glycerol is a more reduced substrate than glucose. Although the production of homoethanol from glucose can be achieved, the conversion of gluconate to ethanol is accompanied by the production of oxidized byproduct such as acetate, and reduced byproducts such as 1,3-propanediol are produced, along with ethanol, when glycerol is used as the carbon source. When gluconate and glycerol are used as the sole carbon source by Klebsiella oxytoca BW21, the ethanol yield is about 62 to 64%. Coutilization of both gluconate and glycerol in batch fermentation increased the yield of ethanol to about 78.7% and decreased by-product accumulation (such as acetate and 1,3-propanediol) substantially. Decreasing by-product formation by deleting the pta, frd, ldh, pflA, and pduC genes in strain BW21 increased the ethanol yield to 89.3% in the batch fermentation of a glycerol-gluconate mixture. These deletions produced the strain K. oxytoca WT26. However, the utilization rate of glycerol was significantly slower than that of gluconate in batch fermentation. In addition, substantial amounts of glycerol remain unutilized after gluconate was depleted in batch fermentation. Continuous fed-batch fermentation was used to solve the utilization rate mismatch problem for gluconate and glycerol. An ethanol yield of 97.2% was achieved in continuous fed-batch fermentation of these two substrates, and glycerol was completely used at the end of the fermentation.IMPORTANCE Gluconate is a biomass-derived degradation product, and glycerol can be obtained as a biodiesel byproduct. Compared to glucose, using them as the sole substrate is accompanied by the production of by-products. Our study shows that through pathway engineering and adoption of a fed-batch culture system, high-yield homoethanol production that usually can be achieved by using glucose as the substrate is achievable using gluconate and glycerol as cosubstrates. The same strategy is expected to be able to achieve homofermentative production of other products, such as lactate and 2,3-butanediol, which can be typically achieved using glucose as the substrate and inexpensive biodiesel-derived glycerol and biomass-derived gluconate as the cosubstrates.


Asunto(s)
Etanol/metabolismo , Gluconatos/metabolismo , Glicerol/metabolismo , Klebsiella oxytoca/metabolismo , Ingeniería Metabólica , Técnicas de Cultivo Celular por Lotes , Biocombustibles , Biomasa , Butileno Glicoles/metabolismo , Fermentación , Klebsiella oxytoca/crecimiento & desarrollo , Ácido Láctico/metabolismo , Redes y Vías Metabólicas
16.
BMC Genomics ; 19(1): 320, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720102

RESUMEN

BACKGROUND: Accumulating evidence suggests that genome plasticity allows filamentous plant pathogens to adapt to changing environments. Recently, the generalist plant pathogen Phytophthora ramorum has been documented to undergo irreversible phenotypic alterations accompanied by chromosomal aberrations when infecting trunks of mature oak trees (genus Quercus). In contrast, genomes and phenotypes of the pathogen derived from the foliage of California bay (Umbellularia californica) are usually stable. We define this phenomenon as host-induced phenotypic diversification (HIPD). P. ramorum also causes a severe foliar blight in some ornamental plants such as Rhododendron spp. and Viburnum spp., and isolates from these hosts occasionally show phenotypes resembling those from oak trunks that carry chromosomal aberrations. The aim of this study was to investigate variations in phenotypes and genomes of P. ramorum isolates from non-oak hosts and substrates to determine whether HIPD changes may be equivalent to those among isolates from oaks. RESULTS: We analyzed genomes of diverse non-oak isolates including those taken from foliage of Rhododendron and other ornamental plants, as well as from natural host species, soil, and water. Isolates recovered from artificially inoculated oak logs were also examined. We identified diverse chromosomal aberrations including copy neutral loss of heterozygosity (cnLOH) and aneuploidy in isolates from non-oak hosts. Most identified aberrations in non-oak hosts were also common among oak isolates; however, trisomy, a frequent type of chromosomal aberration in oak isolates was not observed in isolates from Rhododendron. CONCLUSION: This work cross-examined phenotypic variation and chromosomal aberrations in P. ramorum isolates from oak and non-oak hosts and substrates. The results suggest that HIPD comparable to that occurring in oak hosts occurs in non-oak environments such as in Rhododendron leaves. Rhododendron leaves are more easily available than mature oak stems and thus can potentially serve as a model host for the investigation of HIPD, the newly described plant-pathogen interaction.


Asunto(s)
Aberraciones Cromosómicas , Genómica , Interacciones Huésped-Parásitos , Fenotipo , Phytophthora/genética , Variaciones en el Número de Copia de ADN , Haplotipos , Phytophthora/fisiología , Umbellularia/parasitología
17.
Anal Bioanal Chem ; 410(5): 1475-1487, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29247382

RESUMEN

Phytophthora ramorum is an invasive and devastating plant pathogen that causes sudden oak death in coastal forests in the western United States and ramorum blight in nursery ornamentals and native plants in various landscapes. As a broad host-range quarantine pest that can be asymptomatic in some hosts, P. ramorum presents significant challenges for regulatory efforts to detect and contain it, particularly in commercial nurseries. As part of a program to develop new detection methods for cryptic infections in nursery stock, we compared volatile emissions of P. ramorum-inoculated and noninoculated Rhododendron plants using three gas chromatography-mass spectrometry methods. The first used a branch enclosure combined with headspace sorptive extraction to measure plant volatiles in situ. Seventy-eight compounds were found in the general Rhododendron profile. The volatile profile of inoculated but asymptomatic plants (121 days post-inoculation) was distinguishable from the profile of the noninoculated controls. Three compounds were less abundant in inoculated Rhododendron plants relative to noninoculated and mock-inoculated control plants. A second method employed stir bar sorptive extraction to measure volatiles in vitro from leaf extractions in methanol; 114 volatiles were found in the overall profile with 30 compounds less abundant and one compound more abundant in inoculated Rhododendron plants relative to mock-inoculated plants. At 128 days post-inoculation, plants were asymptomatic and similar in appearance to the noninoculated controls, but their chemical profiles were different. In a third technique, volatiles from water runoff from the soil of potted healthy and inoculated Rhododendron plants were compared. Runoff from the inoculated plants contained four unique volatile compounds that never appeared in the runoff from mock-inoculated plants. These three volatile detection techniques could lead to innovative approaches that augment detection and diagnosis of P. ramorum and oomycete pathogens in nurseries and other settings. Graphical abstract Detection of volatile signatures may aid in discriminating healthy vs. infected but asymptomatic plants in nursery and greenhouse facilities.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Phytophthora , Rhododendron/parasitología , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Enfermedades de las Plantas/parasitología
18.
Enzyme Microb Technol ; 99: 25-31, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28193328

RESUMEN

In a cellulosic biorefinery, the cellulase enzymes needed for hydrolysis are one of the major contributors to high processing costs, while the hydrolysis product, cellobiose, has strong inhibition to the cellulases. In this study, we report engineering recombinant Neurospora crassa strains which are able to produce cellobionate, an organic acid, from cellulose without any enzyme addition. Recombinant strains were constructed by heterologously expressing laccase genes from different sources under different promoters in N. crassa F5Δmus-51Δace-1Δcre-1ΔndvB which has six out of seven ß-glucosidase (bgl), two transcription factor (cre1 and ace-1), and the cellobionate phosphorylase (ndvB) genes deleted. The strain expressing laccase from Botrytis aclada under a copper metallothionein promoter (HL10) produced the highest laccase activity. N. crassa HL10 produced 47.4mM cellobionate from cellulose without any enzyme addition. The yield of cellobionate from hydrolyzed cellulose was about 94.5%. Conversion of cellobiose to cellobionate improved cellulose conversion and increases product yield.


Asunto(s)
Celulosa/metabolismo , Disacáridos/biosíntesis , Neurospora crassa/metabolismo , Botrytis/enzimología , Botrytis/genética , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Ingeniería Genética , Hidrólisis , Microbiología Industrial , Cinética , Lacasa/genética , Lacasa/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
19.
BMC Genomics ; 17: 385, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27206972

RESUMEN

BACKGROUND: Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environments conducive to the generation of aneuploids, the underlying genetic mechanisms, and the contribution of aneuploidy to invasiveness are underexplored. We studied phenotypic diversification and associated genome changes in Phytophthora ramorum, a highly destructive oomycete pathogen with a wide host-range that causes Sudden Oak Death in western North America and Sudden Larch Death in the UK. Introduced populations of the pathogen are exclusively clonal. In California, oak (Quercus spp.) isolates obtained from trunk cankers frequently exhibit host-dependent, atypical phenotypes called non-wild type (nwt), apparently without any host-associated population differentiation. Based on a large survey of genotypes from different hosts, we previously hypothesized that the environment in oak cankers may be responsible for the observed phenotypic diversification in P. ramorum. RESULTS: We show that both normal wild type (wt) and nwt phenotypes were obtained when wt P. ramorum isolates from the foliar host California bay (Umbellularia californica) were re-isolated from cankers of artificially-inoculated canyon live oak (Q. chrysolepis). We also found comparable nwt phenotypes in P. ramorum isolates from a bark canker of Lawson cypress (Chamaecyparis lawsoniana) in the UK; previously nwt was not known to occur in this pathogen population. High-throughput sequencing-based analyses identified major genomic alterations including partial aneuploidy and copy-neutral loss of heterozygosity predominantly in nwt isolates. Chromosomal breakpoints were located at or near transposons. CONCLUSION: This work demonstrates that major genome alterations of a pathogen can be induced by its host species. This is an undocumented type of plant-microbe interaction, and its contribution to pathogen evolution is yet to be investigated, but one of the potential collateral effects of nwt phenotypes may be host survival.


Asunto(s)
Aneuploidia , Fenotipo , Phytophthora/genética , California , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Duplicación de Gen , Perfilación de la Expresión Génica , Ligamiento Genético , Genotipo , Pérdida de Heterocigocidad , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Quercus/microbiología , Transcriptoma
20.
Hortic Res ; 2: 15059, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26715989

RESUMEN

The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by plant hormones and abiotic stress treatments. Silencing of PhFBH4 using virus-induced gene silencing or an antisense approach extended flower longevity, while transgenic petunia flowers with an overexpression construct showed a reduction in flower lifespan. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was significantly changed in petunia PhFBH4 transgenic flowers. Furthermore, silencing or overexpression of PhFBH4 reduced or increased, respectively, transcript abundances of important ethylene biosynthesis-related genes, ACS1 and ACO1, thereby influencing ethylene production. An electrophoretic mobility shift assay showed that the PhFBH4 protein physically interacted with the G-box cis-element in the promoter of ACS1, suggesting that ACS1 was a direct target of the PhFBH4 protein. In addition, ectopic expression of this gene altered plant development including plant height, internode length, and size of leaves and flowers, accompanied by alteration of transcript abundance of the gibberellin biosynthesis-related gene GA2OX3. Our results indicate that PhFBH4 plays an important role in regulating plant growth and development through modulating the ethylene biosynthesis pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...